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Which neighborhoods experience physical improvements? In this
paper, we introduce a computer vision method to measure changes
in the physical appearances of neighborhoods from time-series
street-level imagery. We connect changes in the physical appear-
ance of five US cities with economic and demographic data and
find three factors that predict neighborhood improvement. First,
neighborhoods that are densely populated by college-educated
adults are more likely to experience physical improvements—an
observation that is compatible with the economic literature link-
ing human capital and local success. Second, neighborhoods with
better initial appearances experience, on average, larger positive
improvements—an observation that is consistent with “tipping”
theories of urban change. Third, neighborhood improvement corre-
lates positively with physical proximity to the central business dis-
trict and to other physically attractive neighborhoods—an obser-
vation that is consistent with the “invasion” theories of urban
sociology. Together, our results provide support for three classical
theories of urban change and illustrate the value of using computer
vision methods and street-level imagery to understand the physical
dynamics of cities.

urban economics | gentrification | urban studies | computer vision
neighborhood effects

For more than a century, urban planners, economists, sociol-
ogists, and architects have advanced theories connecting the
dynamics of a neighborhood’s physical appearance to its loca-
tion, demographics, and built infrastructure.

The tipping theory of Schelling (1) and Grodzins (2) suggests
that neighborhoods in bad physical condition will get progres-
sively worse, whereas nicer areas will get better. Economic theo-
ries of urban change at the city level often emphasize population
density and education (3-6), and it is natural to hypothesize that
agglomeration of human capital will predict neighborhood-level
improvements as well. Theories from urban sociology, such as
the invasion theory of Burgess (7), however, emphasize locations
and social networks, predicting that improvements in a city’s
appearance should be spatially clustered, and that improvements
should occur both near the central business districts (CBDs) and
near other physically attractive neighborhoods.

To test theories of physical neighborhood change, we need
to quantify neighborhood appearance at different points in
time. Historically, however, methods to quantify neighborhood
appearance have not been scalable. The empirical literature on
urban appearance, which was pioneered by urban planners such
as Lynch (8), Rapoport (9), and Nasar (10), as well as by psy-
chologists such as Milgram (11), has relied on interviews, low-
throughput visual perception surveys, and manual evaluation of
images. Those methods, however, can only be used to collect data
on a few neighborhoods and have limited spatial resolution. In
the past decade, new data on urban appearance have emerged
in the form of “street view” imagery (12). As of 2016, Google
Street View has photographed more than 3,000 cities from 106
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countries at the street level. Recent approaches to quantify urban
appearance, such as those of Rundle et al. (13), Hwang and
Sampson (14), and Salesses et al. (15), leverage this large online
corpus of street-level imagery but still rely on manual data cura-
tion, limiting throughput.

The appearance of street-level imagery sources has been par-
alleled by significant advances in the field of computer vision.
Tasks such as automatically classifying and labeling images are
now much easier, thanks in part to the availability of more com-
prehensive training datasets and new machine learning algo-
rithms (16). These advances have led to an emerging literature at
the intersection between computer vision, urban planning, urban
sociology, and urban economics.

In 2011, the Massachusetts Institute of Technology (MIT)
Place Pulse project (15) began collecting a massive crowd-
sourced dataset on urban appearance by asking people to select
images from pairs in response to evaluative questions (such as
“Which place looks safer?”). Naik et al. (17) used the Place Pulse
data to train a computer vision algorithm called Streetscore that
accurately predicts human-derived ratings for the perception of a
streetscape’s safety (also see refs. 18 and 19). Using Streetscore,
Naik et al. (17) scored more than 1 million images from 21
cities in the northeastern United States, creating the largest
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We develop a computer vision method to measure changes
in the physical appearances of neighborhoods from street-
level imagery. We correlate the measured changes with
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of urban change.

Author contributions: N.N., S.D.K., E.L.G., and C.A.H. designed research and experiments;
N.N., S.D.K., E.L.G., and C.A.H. performed research and experiments; R.R. and E.L.G. con-
tributed new analytic tools; N.N., S.D.K., E.L.G., and C.A.H. analyzed data; and N.N.,
S.D.K., E.L.G., and C.A.H. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Freely available online through the PNAS open access option.

"To whom correspondence should be addressed. Email: naik@mit.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1619003114/-/DCSupplemental.

PNAS Early Edition | 10f6

S8
EU
(=3
gu.l
v
o
wlﬂ

COMPUTER SCIENCES


mailto:naik@mit.edu
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1619003114/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1619003114/-/DCSupplemental
http://www.pnas.org/cgi/doi/10.1073/pnas.1619003114
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1619003114&domain=pdf&date_stamp=2017-07-06

%
pd
=y

high-resolution dataset of urban appearance to date. Been et
al. (20) used the Streetscore dataset to show that streets with
higher Streetscores in New York are more likely to have been
designated as historical districts. Harvey and Aultman-Hall (21)
examined the skeletal aspects of neighborhoods to show that nar-
row streets with high building densities are perceived as safer
than wider streets with few buildings. Nadai et al. (22) used
Streetscore and mobile phone data to investigate whether safer-
looking neighborhoods are more lively.

A Streetview Image Semantic Segmentation
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Moreover, crowdsourcing and computer vision methods have
been used along with street-level imagery to identify geographi-
cally distinctive architectural elements (23), develop unique city
signatures (24), and predict socioeconomic indicators (25, 26).
Taken together, the range of findings illustrates how computer
vision methods can be used to improve the quantitative study of
urban appearance and space.

In this paper, we create a high-resolution dataset of physical
urban change for five major US cities and use it to study the
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Fig. 1. Computing Streetchange: (A) We calculate Streetscore, a metric for perceived safety of a streetscape, using a regression model based on two image

features: GIST and texton maps. We calculate those features from pixels of four object categories—ground, buildings, trees, and sky—which are inferred
using semantic segmentation. (B-D) We calculate the Streetchange of a street block as the difference between the Streetscores of a pair of images captured
in 2007 and 2014. (B) The Streetchange metric is not affected by seasonal and weather changes. (C) Large positive Streetchange is typically associated with
major construction. (D) Large negative Streetchange is associated with urban decay. Insets courtesy of Google, Inc.
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Table 1. Summary statistics (N =2,513)

Variables Description Mean SD Minimum Maximum

Streetscore 2007 Mean Streetscore 2007 of all sampled street 7.757 2.587 1.681 18.930
blocks within a census tract

Streetchange 2007-2014 Mean Streetchange 2007-2014 of all sampled 1.390 0.779 —4.076 6.121
street blocks within a census tract

Adjacent Streetscore 2007 Mean Streetscore 2007 of all 7.787 2.309 2.548 17.240
boundary-adjacent census tracts

Log population density 2000 Log of population density within a census —4.655 1.220 —15.290 —2.480
tract, as reported by the 2000 US Census

Adjacent log population density 2000 Mean of log population density 2000 for all —4.508 0.883 —11.090 -2.730
boundary-adjacent census tracts

Share college education 2000 The share of adults within a census tract 0.254 0.216 0 1
that have a four-year college degree, as
reported by the 2000 US Census

Adjacent share college education 2000 Mean of share college education 2000 for all 0.251 0.191 0.115 1
boundary-adjacent census tracts

Distance to CBD The distance of the census tract from the 5.123 2.685 0 9.997

central business district, in miles

determinants of physical improvements in neighborhoods. We
use our data to test three theories of urban change. We find that,
in agreement with economic theories of human capital agglomer-
ation, neighborhoods that are densely populated by highly edu-
cated individuals are more likely to experience positive urban
change. Also, in agreement with the invasion theory (7) of urban
sociology, we find that neighborhoods are more likely to improve
in physical appearance when they are proximate to a CBD and/or
other neighborhoods perceived as safe. Finally, we find evidence
for a weak version of the neighborhood tipping theory (1, 2), as
the neighborhoods that had the best appearances at the begin-
ning experienced the largest improvements (however, we do not
find that neighborhoods with initially low scores deteriorated—
they just improved less). Our findings illustrate how computer
vision methods, together with demographic and economic data,
can be used to study physical urban change.

Data and Methods

We obtained 360° panorama images of streetscapes from five
US cities using the Google Street View application programming
interface. Each panorama was associated with a unique identifier
(“panoid”), latitude, longitude, and time stamp (which specified
the month and year of image capture). We extracted an image
cutout from each panorama by specifying the heading and pitch
of the camera relative to the Street View vehicle. We obtained
a total of 1,645,760 image cutouts for street blocks in Balti-
more, Boston, Detroit, New York, and Washington, DC, cap-
tured in 2007 (the “2007 panel”) and 2014 (the “2014 panel”).”
We matched image cutouts from the 2007 and 2014 panels by
using their geographical locations (i.e., latitude and longitude)
and by choosing the same heading and pitch. This process gave
us images that show the same place, from the same point of view,
but in different years (Fig. 1 B-D)."

We calculated the perception of safety—called “Streetscore”—
for each image using a variant of the Naik et al. algorithm (17)
trained on a crowdsourced study of people’s perception of safety
(15) based on 2,920 images from Boston and New York and

*For the street blocks that lack images for either 2007 or 2014 we completed the 2007
and 2014 panels using images from the closest years for which data were available. As
a result, 5% of the images in the 2007 panel are from either 2008 or 2009. Similarly,
12% of the images in the 2014 panel are from 2013.

TWe reduced our data to eliminate pairs containing over-exposed, blurred, or occluded
images (for details, see S/ Appendix).

Naik et al.

186,188 pairwise comparisons. The Streetscore computation pro-
cess included three steps (Fig. 14). First, we segmented images
into four “geometric” classes: ground (which contains streets,
sidewalks, and landscaping), buildings, trees, and sky (27). Next,
we created feature vectors characterizing each geometric class
using two image features: GIST (28) and texton maps (29).
Roughly speaking, these features encode the shapes and tex-
tures present in an image. Finally, we used the features of streets
and buildings to predict the Streetscore of an image using sup-
port vector regression (30). We ignored the features of trees
and sky to minimize seasonal effects (weather, time of day, and
time of year). The predicted Streetscore of a Street View image
ranges from 0 to 25, with 0 being the most unsafe-looking street
scene in the sample and 25 the most safe-looking scene. Next, we
computed changes in Streetscores between images in the 2007
and 2014 panels, to obtain Streetchange (Fig. 1 B-D). A posi-
tive value of Streetchange is indicative of upgrading in physical
appearance, whereas a negative value of Streetchange is indica-
tive of decline. (For details on the methods, see ST Appendix.)

We validated Streetchange using three sources: a survey con-
ducted on Amazon Mechanical Turk (AMT), a survey of grad-
uate students in MIT’s School of Architecture and Planning,
and data from Boston’s Planning and Development Authority
(BPDA).

Participants gave informed consent for all human subject stud-
ies. Experiments were approved by the Massachusetts Institute
of Technology’s Committee on the Use of Humans as Exper-
imental Subjects (MIT COUHES). The AMT study was con-
ducted in accordance with the requirements of MIT COUHES.

We found strong agreement between Streetchange and both
({) human assessments and (i) new urban development. In
the AMT validation, workers were presented two image pairs,
drawn from a pool of 1,565, and asked to select the one
showing more physical change. The binned ranked scores pro-
vided by the AMT workers had a strong correlation with abso-
lute Streetchange (Spearman correlation = 72%, P-value <1 X
107°). In the School of Architecture and Planning student val-
idation we presented students with 150 image pairs and asked
them to classify images into positive and negative physical change
(N = 3). The students agreed with Streetchange in 74% of cases.
Finally, we collected building project data from BPDA and corre-
lated Streetchange with total new square footage built per square
mile (at census-tract level) during the sample period (2012—
2014). We found a significant and positive correlation between
Streetchange and new square footage—one SD increase in log
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Table 2. Relationship between social characteristics and changes in Streetscore

Coefficients for
Streetscore 2007

Coefficients for
Streetchange 2007-2014

Independent variables (1) 2) 3) 4) (5) (6)
Share college education 2000 2.547*** 2.657%**  (0.657*** 0.703***
(0.740) (0.668) (0.106) (0.105)
Log population density 2000 0.740***  (0.832%** 0.056***  0.084***
(0.095) (0.107) (0.020) (0.024)
Streetscore 2007 0.027***  (0.033** 0.013
(0.010) (0.014) (0.012)

All models control for city fixed effects. **P < 0.01, P < 0.05.

total square footage corresponds to roughly half an SD increase
in Streetchange (see SI Appendix for details).

To relate the Streetscore indicators of neighborhood appear-
ance to socioeconomic composition, we aggregated the Street-
score and Streetchange variables at the census-tract level and
obtained tract characteristic data from the 2000 US Census,
adjusted to the 2010 census-tract boundaries (31). For summary
statistics, see Table 1.

Results

We begin by presenting the cross-sectional demographic and
economic correlates of cities” physical appearances and changes
in appearance, as estimated by 2007 Streetscore and Streetchange
between 2007 and 2014 (Table 2). All regressions include city
fixed effects and hold up in multivariate specifications. Addi-
tionally, in all regressions we have corrected for spatial corre-
lation in standard errors following Conley (32) using STATA
routines developed by Hsiang (33). For each census tract we con-
sider population density, level of education (share of college edu-
cated adults), median income, housing price, rental costs, hous-
ing vacancy, race, and poverty. From all of these variables the two
strongest correlates of perception of safety are population density
and education, so we present a table (Table 2) summarizing the
coefficients of these two variables. (For a table with all controls
see SI Appendix, Table S4.)

Column 2 of Table 2 shows that Streetscores improve by 0.74
with the log of population density. This represents about one-
quarter of an SD of Streetscore (2.6). Because Streetscores are

Streetchange 2007-2014

4 6 8 10 12 14
Streetscore 2007

Fig. 2. Evidence of neighborhood tipping: We test the tipping model of
neighborhood change. We group the data into 16 bins based on the initial
value of Streetscore and plot the average Streetchange in each bin against
the average initial Streetscore.
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roughly linear in log density, the overall relationship is concave,
meaning that perceived safety rises with density but the effect
levels off. This fact lends some support to the idea that perceived
safety increases with “eyes on the street” (34). However, our find-
ing does not imply that dense urban spaces are seen as safer than
low-density suburban or rural areas, because we do not have such
low-density spaces in our sample. Our results suggest only that in
five (generally dense) eastern US cities, spaces with high popula-
tion densities are perceived as being safer than urban spaces with
low population densities.

The second robust correlate of perceived safety is education
(Table 2, column 1). As the share of the population with a col-
lege degree increases by 20% (one SD), perceived safety rises by
0.51, or one-sixth of an SD in Streetscore. We suspect that the
relationship reflects the tendency of educated people to be will-
ing to pay for neighborhoods that appear safer, rather than the
ability of educated residents to make a neighborhood feel safe.

We now move to changes in physical appearance—the primary
contribution of this paper. Columns 4, 5, and 6 of Table 2 show
the correlations between initial social characteristics, as mea-
sured in the 2000 US Census, and neighborhood Streetchange
as measured between 2007 and 2014.

Column 4 of Table 2 examines education, again controlling
for initial Streetscore. The observed impact of education on
Streetchange seems to be large. A one-SD increase in share with
college degree in 2000 (20%) is associated with an increase in
Streetchange of 0.13, or about one-sixth of an SD. Just as skilled
cities have done particularly well over the last 50 y, skilled neigh-
borhoods seem to have experienced more physical improvement.

Column 5 of Table 2 shows that—controlling for initial
Streetscore—as the log of density increases by 1 the growth in
Streetscore increases by 0.06 points. The estimated impact of log

Table 3. Evidence of invasion
Coefficients for Streetchange 2007-2014
Independent variables (1) ) (3) 4)

Distance to CBD —0.042*** _0.050*** —0.051*** —0.036***

(0.011) (0.011) (0.011) (0.011)

Adjacent Streetscore 0.063*** 0.049**
2007
(0.019) (0.019)
Adjacent log population
density 2000 0.115** 0.093**
(0.046) (0.046)
Adjacent share college
education 2000 0.620***  0.626***
(0.167) (0.172)

All models control for Streetscore 2007, Share college education 2000,
and Log population density 2000 of a given census tract—along with city
fixed effects. “"P < 0.01, P < 0.05.

Naik et al.
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Fig. 3.
highly educated populations, as illustrated here for Brooklyn, New York.

density on the Streetchange over a 7-y period is about 1/12 of the
impact of log density on the level of Streetscore in 2007. Den-
sity does seem to predict growth in Streetscore over the sam-
ple period, but the relationship is far weaker than the connec-
tion between density and the level of Streetscore in 2007. We
did not find any robust relationships between Streetchange and
median income, housing price, or rental costs; this suggests that
the education effect is more likely to reflect skills than income
(SI Appendix, Table S4).

The finding that variables that predict the level of Streetscore
in 2007 also predict the change in Streetscore between 2007 and
2014 seems to support a positive feedback loop—the essence of
tipping models (1, 2). Tipping is also suggested by the positive
correlation between 2007 Streetscore and Streetchange.? How-
ever, we find a linear relationship, rather than the nonlinear rela-
tionship suggested by the original tipping theory (2). Moreover,
tipping models suggest that initially unattractive neighborhoods
get worse over time—and that is not found in our data. The mean
Streetchange by decile of 2007 Streetscore is positive even for
the areas with the lowest scores (Fig. 2). It is not clear whether
this represents tipping or a pattern in which visually safer areas
are being upgraded first and faster. We suspect that the lack
of downward movement may be particular to the time period
under consideration. Despite the Great Recession, 2007-2014
was a relatively good time period for many of America’s eastern
cities, and this may explain why we do not see declines even for
less-attractive neighborhoods. Still, the data do show the overall
pattern predicted by tipping models, in which upward growth is
faster in initially better areas.

Next, we test for invasion (7) by regressing changes in
Streetscore on characteristics of bordering neighborhoods and
proximity to the CBD, after controlling for the predictors identi-
fied in Table 2 (2007 Streetscore, log of density, and education).®
The invasion hypothesis is just one of the reasons why areas may
improve more when they have attractive neighbors—perhaps the
most natural explanation is just that areas that are worse or bet-
ter than their neighbors tend to mean-revert to the norm for
their sections of the city. We test for the importance of loca-
tion within the city by looking at the impact of proximity to the
CBD. Column 1 of Table 3 shows that as the distance to the

fwithout the other controls, for each extra point of Streetscore in 2007, Streetscore
growth is 0.04 points higher over the next 7 y.

8CBD locations were based on the coding of Cortright and Mahmoudi (35).

Naik et al.
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The correlates of physical upgrading in neighborhoods: Positive urban change occurs in geographically and physically attractive areas with dense,

CBD increases by 1 mile expected Streetscore growth falls by
0.04 points. Appearance upgrading is strongest closer to the city
center, paralleling Kolko’s (36) finding that economic gentrifica-
tion is more pronounced closer to the city center.

The original invasion hypothesis postulated a process under
which low-income areas would gradually make their ways out
from the center to nearby suburbs. The current pattern is instead
one in which the central city sees particularly large upgrades in
perceived street safety. One interpretation is that we are cur-
rently witnessing the reversal of the process described by Burgess
(7): City centers, which have always had a strong fundamental
asset—proximity to jobs—are experiencing physical change that
expresses a reversion to that fundamental.

Although the data do not suggest decay emanating out from a
center, the core idea of the invasion hypothesis—that neighbor-
hoods spill over into each other—is readily confirmed in the data.
Column 1 of Table 3 also shows the effect of average Streetscore
in surrounding areas on Streetchange. Notably, the coefficient on
neighboring scores is more than double the impact of the neigh-
borhood’s own score, implying that almost 1/10 of the Streetscore
difference between a neighborhood and its neighbors is elimi-
nated over a 7-y period. Because most of the movement over the
sample period is positive, the regression should be interpreted
as meaning that growth is faster in areas with more attractive
neighbors. This strong convergence is exactly the prediction of
the invasion theory.

Column 2 of Table 3 examines the effect of adjacent den-
sity. Because adjacent density is highly correlated with adjacent
Streetscore, it is not surprising to see that there is also a robust
correlation here, although the connection is not as strong as with
adjacent Streetscores. Column 3 of Table 3 looks at average
share of the population with college degrees in adjacent areas.
The relationship is positive and robust. As the share increases
by 20%, Streetscore increases by 0.12 points. This again corrob-
orates the results of Kolko (36), who found that gentrification
is faster in areas with more educated neighbors. These findings
point to a process of neighborhood spillovers and convergence,
which are, in a sense, at the heart of the invasion hypothesis.!

9in our working paper (37) we also looked at the “filtering” hypothesis, which suggests
the importance of the age of the building stock: Areas should gradually decline until they
are upgraded. To test the hypothesis that building age shapes streetscape change, we
regressed Streetchange on the shares of the building stock (as of the year 2000) built
during different decades, controlling for 2007 Streetscore, log of density, and education.
We found at best limited support for the filtering hypothesis (S/ Appendix, Table S5).
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Fig. 3 illustrates the relationship between location, education,
population density, and physical improvement in neighborhoods
from Brooklyn, New York. In ST Appendix, Figs. S9-S28 we pro-
vide similar map visualizations for all cities in our dataset.

Conclusion

For decades, scholars from the social sciences and the humani-
ties have discussed the importance of urban appearance and the
factors that may contribute to physical urban change. Here, we
test theories of urban change using Streetchange, a metric for
change in urban appearance obtained from street-level imagery
with a computer vision algorithm.

The data show that population density and education in both
neighborhoods and their surrounding areas robustly predict
improvements in neighborhoods’ physical environments; other
variables show less correlation. The results also show strong sup-
port for the invasion hypothesis of neighborhood change (7),
which emphasizes spillovers across neighborhoods.

Our work suggests several open questions for future work. Is
the correlation between density and perceived safety true more
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